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Fig. 7. Film condition of gold thick film utilizing chemical bonding.

it can be noted that thick-film transmission loss is close in value
to that of thin film.

This study proves that thick film can be fully utilized up to a
frequency of 10 GHz, and it can be concluded that it will be used
in low-cost MIC’s in mass-produced equipment. Thick film which
uses copper (its characteristic impedance is 50 £ and the sub-
strate thickness is 0.635 mm) has a low transmission loss: 0.005
dB/cm at 0.2 GHz, 0.027 dB/cm at 2 GHz, 0.050 dB/cm at 5
GHz, and 0.087 dB/cm at 10 GHz.
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Taking into Account the Edge Condition in the
Problem of Diffraction Waves on Step Discontinuity
in Plate Waveguide

V.P.LYAPIN, V. S. MIKHALEVSKY, AND G. P. SINYAVSKY

Abstract — A way of improving the convergence of the field-matching
method by means of taking into account the edge conditions is proposed.
The unknown function, as defined on the matching lines, should be
expanded into a infinite set of the orthegonal Gegenbauer polynomials
having the required singularity.

One of the ways of improving the convergence of the field-
matching method (FMM) being used for solving various prob-
lems of electrodynamics is taking into account the edge condition
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Fig. 1. Step-diaphragm junction in plate waveguide.

in the vicinity of the edge [1], [2]. In the present paper, this
technique is applied to the problem of wave diffraction on the
step-diaphragm junction in plate waveguides. This is a typical
problem to which the calculation of various step discontinuities
in rectangular waveguides is reduced.

Unlike the paper [3] where the edge condition is considered as
a correction term to the probe function describing the field in the
apperture, in this paper the edge condition is taken into account
by every term of the expansion.

Let the TMp-wave with nonzero field components H,, E,, E,
be incident from the wide waveguide onto the obstacle (Fig. 1).
This particular problem can be reduced to the solution of an
integral equation relative to the unknown distribution function

f(»)=(kv,)'E,|,= for a ficld component in the diaphragm
aperture

c oo
[70) 3 {0000+ 00000 | r=24,0)

n=0
m

where

‘Pn(y): L COSdny anzy‘—} Ynz=k2—d,%

?(y)= L cosB,y B, =£b7i 2 =k2— B2

where 8, is the Kroneker symbol and k=2x/A.
The approximate solution of this equation can be found by
means of Galerkin’s method in the form

"N
f(y)= gOV,X,(y) 2

where

X =[1=C/e)] T (y/c)

and T,,(y) is the Chebyshev polynomials of the first kind.
With the above chosen basis-function set X,(y), the boundary
condition at y =0 is satisfied and the function f(y) possesses the
required singular behavior when y — ¢ [4], the infinite set of {X,}
is complete and orthogonal on the interval [0, c]. The unknown
expansion coefficients V, can be determined from the system of
linear algebraic cquations
k=0,1,---,N

2 V.Cp= (3)

1=0

Rk’
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TABLE I
THE DIAPHRAGM SUSCEPTANCE B
" i 10 20 30 50 100
0 1.5505 1.5807 I.5310 1.5395 I1.6053
I 1.5076 I.5507 1.5649 1.5763 1.5847
2 1.4935 I1.5475 1.5636 1.5759 1.5847
3 1.4673 1.5413 1.5670 1.5750 1.5846
4 I1.4264 1.5318 I1.5570 1.5737 I.5842
where
o0
C,.= 2 278 q)t(an)q)k(an)+¢1(:Bn)¢k(ﬂn)
77 ( On) a b)\
n=0 Yn n
— 2_80n _ 1
Ri=2) = oule,),  o()=(—D)T(a) (4)

and T,(«) is the Bessel function of the first kind.

As a particular example demonstrating the convergence of the
technique discussed, it appears convenient to consider the prob-
lem of diffraction of the TM-wave by a diaphragm with dimen-
sions 2c=a=b, as the exact solution for this special case has
been already obtained by the Wiener—Hopf technique [5].

In Table I are presented the values of the imaginary part B of
the normalized input susceptance Y for a =0.4A and various N
and M (M is a maximum value of the summation index in (4)).
The B values are determined by the reflection coefficient 4, of an
incident wave by the ratio

1—4, __V()Ro_
1+ 4, T2y,

The exact value of Y calculated in [5]is Y=1+1.5931,.

The presented results enable us to draw the following conclu-

sions. ‘
1) The convergence of the solution, depending on the number
of functions needed to approximate the field behavior at the
boundary of matching, is much better here as compared with the
conventional FMM. In fact, the error of the first-order approxi-
mation (N =0) does not exceed one per cent here, whereas it
equals about 40 percent for a conventional method [6].

2) The ratio M/N=a/c found in [6] as a condition, which
provides the best accuracy of the result in conventional FMM
technique, does not work when the discontinuity is taken into
account by the method presented here. The correct results in the
given case can be obtained only under M > N conditions. When
the ratio M/N is decreasing, the deterioration of convergence
occurs due to insufficient calculation accuracy of the matrix
elements.

An attempt to improve the accuracy by means of a direct
increase of the number of terms included in the sums (4) results
in the increase of computing time. Calculation can be made
reasonable by using, for calculating the sum terms with large
indices, only the first term of their asymptotic expansion. Then
the formula for C,, takes the form

1.

Y=G+ jB=

M
Czk: 20(2__80") qbz(ana)i)k(an) + ¢1(:Bnb);\ﬁk(.8n) +s
s=—j2 3 Lia(+sin2a,c)+b(1+sin28,0)].

TCpn=M+11

)
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TABLE II
THE DIAPHRAGM SUSCEPTANCE B CALCULATED WITH THE
CORRECTION §

o U 10 20 30 50 100
¢ I.6122 1.6123 1.6123 1.6123 1.6123
I 1.5932 1.5332 I.5332 1.5932 1.5932
2 1.5931 1.5031 1.5031 1.5331 1.5031
3 I.5722 1.5731 1.5331 1.5931 I.5931
4 1.5843 1.5929 1.5931 1.5331 I1.5231

The S value is the same for all C,, and is independent of
frequency, so S needs to be evaluated only once for the given
dimensions. The results of calculating the diaphragm susceptance,
for the previously mentioned dimensions, as obtained with the
help of formula (5) are listed in Table II.

As it follows from the table, such a technique for calculating
the C,, with respect to (5) provides a rapid convergence of the
approximate solutions to an exact one. The convergence slightly
decreases when ¢ — b. In the extreme case when ¢ = b, the nature
of the singularity is altered [4]; therefore, so too are the functions
by which f(y) is expanded, and the following should be used:

X(y)=[1=(/e)] iy /e)

where C/%(y) is the Gegenbauer polynomials. Accordingly, ¢,
and § given in (4) and (5) also change, thus

¢,(a)= (_1)1‘1_1/6T21+1/6(0‘b)
4/3 o 20 b—a/3
§= _jw_3,/3{4a » cos*(a,b~m/3)

21/3
b n=M+1 n?!/

VI R U Gy
2173 (-

n=M+11

As the carried-out calculations revealed, the convergence of the
results in the case of a step junction, without a diaphragm, of two
waveguides with unequal heights is similar to the convergence for
the structure discussed above. For making calculations, it is
sufficient to take into account in the expansion of (2) only 2-3
terms and the M value may equal 10-20.

The solution of the problem of the TE-wave diffraction by a
step-diaphragm junction is identical. It was found that the con-
vergence of results in this case was similar to that for the above
examples. Thus, the developed method provides a rapid conver-
gence of the approximate results to the exact one, and therefore
permits the reduction of the order of the system of algebraic
equations. This method can be employed for calculating thin and
thick diaphragms in rectangular waveguides, slow-wave ridge
systems, various types of junctions, and displacements of wave-
guides and similar structures.
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Exact Derivation of the Nonlinear
Negative-Resistance Oscillator Pulling Figure

J. OBREGON AND A. P. S. KHANNA

Abstract — Only approximate relations are so far available for the pulling
figure of an oscillator. An exact derivation of the pulling figure is presented
here, taking fully into account the nonlinearity of the oscillator admittance.
Effect of the oscillator nonlinearity on the asymmetry of the pulling range
is presented.

I. INTRODUCTION

Oscillator frequency variation with the load changes is often
represented by its pulling figure. The pulling figure has so far
been calculated either by neglecting the oscillator admittance
variation with the RF voltage [1] or has been calculated by
approximately taking into account the transferred admittance in
the oscillator plane for a small-load perturbation [2]. We present
here an exact derivation of the pulling figure taking fully into
account the nonlinear behavior of the oscillator admittance. The
relation between the asymmetry of the oscillator pulling range
and the nonlinearity of the oscillator admittance has been de-
rived. Pulling figures for certain particular cases are also pre-
sented.

II. FREQUENCY VARIATION WITH THE LOAD CHANGES

The oscillation condition at the oscillator-output plane without
any load perturbation is represented by

Yro=Yp+%=0

(1)
where Y is the oscillator nonlinear output admittance and Yj is
the load admittance.

If the oscillations exist with a load perturbation of AY, in the
oscillator output plane and writing Aw and AV as the correspond-
ing frequency and RF voltage changes, the oscillation condition
can be represented by

dYTO dYTO —
Yo+ AY, + T8 Aw+ =2 AV =0. )
From (1) and (2)

d¥ry dYro .,

AY, +—22 Ao+ —2AV =0 (3)
separating into real and imaginary parts

dGTO dGTO —

AG + =T hw+ 1AV =0 4)
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Fig. 1. Simulation of load variation.
and
dBry dBrg . _
AB; + o Aw + ra V=0 (5)
where
AY; =AG,+AB,
and
Yro=Gyo+ Bry.
From (4) and (5)
dBp,
Ao = AGL gy
dGrg . dBry dGry . dBry
v dw do dV
dG
AB, 70
_ av (6)
dGro dBrg _ dGro dBro
dV  de dw av
and
dG
AB,- T0
AV = dw
dGry . dBry dGry . dBry
dv  de dw av
dB
AG, - dl‘)
 dGry dBry dGry dBry )
av  dw dw dv

III. LOAD VARIATION SIMULATION

From Fig. 1 it can be noted that any reactive load perturbation
of value jA B can be represented by a nonreactive load perturba-
tion of AG by suitably selecting the reference plane in the output
line between the oscillator and the perturbation. For the purposes
of the exact derivation of the pulling figure, we simulate the load
perturbation by AG (Fig. 1(b)) with the transmission-line length /
variable between 0 and A /2.

For any value of 8 = B1, the transferred load admittance Y, at
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