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Fig. 7. Film condition of gold thick film utilizing chemicaf bonding.

it can be noted that thick-film transmission loss is close in value
to that of thin fihn.

This study proves that thick film can be fully utilized up to a
frequency of 10 GHx, and it can be concluded that it will be used
in low-cost MIC’S in mass-produced equipment. Thick film which

uses copper (its characteristic impedance is 50 !il and the sub-

strate thickness is 0.635 mm) has a low transmission loss: 0.005

dB/cm at 0.2 GHz, 0.027 dB/cm at 2 GHz, 0.050 dB/cm at 5

GHz, and 0.087 dB/cm at 10 GHz.
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Taking into Account the Edge Condition in the

Problem of Diffraction Waves on Step Discontinuity

in Plate Waveguide

V. P. LYAPIN, V. S. MIKHALEVSKY, AND G. P. SINYAVSKY

Abstract —A way of improving the convergence of the field-matching

method by means of taking into account the edge conditions is proposed,

The unknown function, as defined on the matting fines, should be

expanded into a infinite set of the orthogonal Gegenbauer polynomials

having the required singularity.

One of the ways of improving the convergence of the field-

matching method (FMM) being used for solving various prob-

lems of electrodynamics is taking into account the edge condition
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Fig. 1. Step-diaphragm junction in plate waveguide.

in the vicinity of the edge [1], [2]. In the present paper, this

technique is applied to the problem of wave diffraction on the

step-diaphragm junction in plate waveguides. This is a typical

problem to which the calculation of various step discontinuities

in rectangular waveguides is reduced.

Unlike the paper [3] where the edge condition is considered as

a correction term to the probe function describing the field in the

apperture, in this paper the edge condition is taken into account

by every term of the expansion.

Let the TMP-wave with nonzero field components 17X, ~Y, E=

be incident from the wide waveguide onto the obstacle (Fig. 1).

This particular problem can be reduced to the solution of an

integral equation relative to the unknown distribution function

~(.v) = (kyP)- lEY I~=0 for a field component in the diaphragm
aperture

Jcf(Y)n:o(++n(Y)+n(Y’)++9n(Y)9n(Y’))@=wp(Y’)
o n

(1)

where

where don is the Kroneker symbol and k = 2 T/ A.
The approximate solution of this equation can be found by

means of Galerkin’s method in the form

f(Y) =l;oJ’wY) (2)

where

~(y) = [1–(y/c)2]-’’2T2, (c)c)

and T2, ( y ) is the Chebyshev polynomials of the first kind.

With the above chosen basis-function set X,( y), the boundary

condition at y = O is satisfied and the function ~( y ) possesses the

required singular behavior when y + c [4], the infinite set of {X, }

is complete and orthogonal on the interval [0, c]. The unknown

expansion coefficients ~ cart be determined from the system of

linear algebraic equations

; <C,, = R,, k= O,l,...,N (3)
,=0
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o 1.5505

I 1.5076

2 1.4935

3 1.4673

TABLE I

THE DIAPHRAGM SUSCEPTANCE B

20

1.5807

1.5507

1.5475

i.5413

1.5318

30

1.5910

i .5649

1.5636

1.5610

1.5570

50

1.5395

1.5763

1.5759

1.5750

1,5737

100

1.6653

1.5847

1.5847

1.5846

1. 58+2

where

Ce

Rk=2
i

2 – tion
— @k(a, ),

a
+,(a) = (–1)’T21(ac) (4)

and ~(a) is the Bessel function of the first kind.

As a particular example demonstrating the convergence of the

technique discussed, it appears convenient to consider the prob-

lem of diffraction of the TMO-wave by a diaphragm with dimen-

sions 2 c = a = b, as the exact solution for this special case has

been already obtained by the Wiener-Hopf technique [5].

In Table I are presented the values of the imaginary part B of

the normalized input susceptance Y for a = 0.4A and various N

and M ( lf is a maximum value of the summation index in (4)).

The B values are determined by the reflection coefficient ~ o of an

incident wave by the ratio

l–AO VORO_l,
Y= G+jB=m Ao=—

0 2 yo

The exact value of Y calculated in [5] is Y= 1+ 1.593 lj.

The presented results enable us to draw the following conclu-

sions.

1) The convergence of the solution, depending on the number

of functions needed to approximate the field behavior at the

boundary of matching, is much better here as compared with the

conventional FMM. In fact, the error of the first-order approxi-

mation (N= O) does not exceed one per cent here, whereas it

equals about 40 percent for a conventional method [6].

2) The ratio &f/N= a /c found in [6] as a condition, which

provides the best accuracy of the result in conventional FMM

technique, does not work when the discontinuity is taken into

account by the method presented here. The correct results in the

given case can be obtained only under kf ~ N conditions. When

the ratio M\N is decreasing, the deterioration of convergence

occurs due to insufficient calculation accuracy of the matrix

elements.

An attempt to improve the accuracy by means of a direct

increase of the number of terms included in the sums (4) results

in the increase of computing time. Calculation can be made

reasonable by using, for calculating the sum terms with large

indices, only the first term of their asymptotic expansion. Then

the formula for C,k takes the form

S“–jL ~ ~[a(l+sin2anc)+ b(l+sin2~nc)].
~2cn=M+~ n

(5)

TABLE II

THE DIAPHRAGM SUSCEPTANCE B CALCULATED WITH THE

CORRECTION S

,,\ul lo] 20 130 /50 100
I 1 I I I

c 1.6122 1.6123 1.6123 i.612j i.6123

I 1.5932 1.5332 1.5332 I .5932 1.5932

2 1.5931 2..5331 1.5’331 i. 5331 1.5331

3 1.5222 1.5231 1.5931 1.5931 1.5931

4 1.5843 1.5923 ~.593q 1.5331 1,5331

, ,

The S value is the same for all C,k and is independent of

frequency, so S needs to be evaluated only once for the given

dimensions. The results of calculating the diaphragm susceptance,

for the previously mentioned dimensions, as obtained with the

help of formula (5) are listed in Table II.

As it follows from the table, such a technique for calculating

tie C,k with respect to (5) provides a rapid convergence of the

approximate solutions to an exact one. The convergence slightly

decreases ~hen c + b. In the extreme case when c = b, the nature

of the singularity is altered [4]; therefore, so too are the functions

by which ~(y) is expanded, and the following should be used:

~(y) = [l–(y/c)’] -“’c;{ ’(y/c)

where C~/’( y ) is the Gegenbauer polynomials. Accordingly, ~1

and S given in (4) and (5) also change, thus

$,(a) = (–l)la-1/’T21+1 /6(ab)

{

4a4/3
S= –j~-31/3 _

:

Cosz(anb – 7r/3)

b n21/3
~=&f+]

+ @/3
1

*=:+, * (6)

As the carried-out calculations revealed, the convergence of the

results in the case of a step junction, without a diaphragm, of two

waveguides with unequal heights is similar to the convergence for

the structure discussed above. For making calculations, it is

sufficient to take into account in the expansion of (2) only 2–3

terms and the ~ value may equal 10–20.

The solution of the problem of the TE-wave diffraction by a

step-diaphragm junction is identical. It was found that the con-

vergence of results in this case was similar to that for the above

examples. Thus, the developed method provides a rapid conver-

gence of the approximate results to the exact one, and therefore

permits the reduction of the order of the system of algebraic

equations. This method can be employed for calculating thin and

thick diaphragms in rectangular waveguides, slow-wave ridge

systems, various types of junctions, and displacements of wave-

guides and similar structures.
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Exact Derivation of the Nonlinear

Negative-Resistance Oscillator Pulling Figure

J. OBREGON AND A. P. S. KHANNA

Abstract — Only approximate relations are so far available for the pufling

figure of an oscillator. An exact derivation of the pnlling figure is presented

here, tafdng fufly into account the nonlinearity of the oscillator admittance.

Effect of the oscillator nonlinearity on the asymmetry of the pulling range

is presented.

I. INTRODUCTION

Oscillator frequency variation with the load changes is often

represented by its pulling figure. The pulling figure has so far

been calculated either by neglecting the oscillator admittance

variation with the RF voltage [1] or has been calculated by

approximately taking into account the transferred admittance in

the oscillator plane for a small-load perturbation [2]. We present

here an exact derivation of the pulling figure taking fully into

account the nonlinear behavior of the oscillator admittance. The

relation between the asymmetry of the oscillator pulling range

and the nonlinearity of the oscillator admittance has been de-

rived. Pulling figures for certain particular cases are also pre-

sented.

11. FREQUENCY VARIATION WITH THE LOAD CHANGES

The oscillation condition at the oscillator-output plane without

any load perturbation is represented by

YTO=YT+YO=O (1)

where Y~ is the oscillator nonlinear output admittance and YO is

the load admittance.

If the oscillations exist with a load perturbation of A YL in the

oscillator output plane and writing Au and A~ as the correspond-

ing frequency and RF voltage changes, the oscillation condition

can be represented by

“~o Au + dY
Y~o+AYL+z. -# Av=o.

From (1) and (2)

separating into real and imaginary parts

AGL +
dGTo dGTo
~Aco+ ~Av=O

(2)

(3)

(4)

Manuscript received November 18, 198 1; revised February 9, 1982.
The authors are with Laboratoire d%fectronique des Microndes, E.R.A. au

C.N.R.S., U.E.R. des Sciences, 123 rue Albert-Thomas, 87060 Limoges, Cedex,
France.

(c)

Fig, 1. Simulation of load variation.

and

ABL+
dBTo dBTO
~Au+ ~v=o

where

AYL=AGL+ABL

and

Y~o = G~o + BTO.

From (4) and (5)

AGL%
Au=

dGTo dBTo _ dGTO dBTo—. —— —
dV do do “ dV

(5)

dG
ABL. ~

—
dGTo dBTo dGTo dBTo

(6)
—— .— .—

dv da dw dV

and

dG
ABL. ~

Av=
dGTo dBTodGTo dBr-o . _—. —

dV do do dV

dBTo
AGL. ~

—
dGTo dBTo “

(7)
dGTo dBTo _

dV”dudm”dV

III. LOAD VARIATION SIMULATION

From Fig. 1 it can be noted that any reactive load perturbation

of value jA B cm be represented by a nonreactive load perturba-

tion of AG by suitably selecting the reference plane in the output

line between the oscillator and the perturbation. For the purposes

of the exact derivation of the pulling figure, we simulate the load

perturbation by AG (Fig. 1(b)) with the transmission-line length 1
variable between O and ~ /2.

For any value of b’ = I?l, the transferred load admittance YL at

0018-9480/82/0700-1 109$00.7501982 IEEE


